A Multi-objective Approach for Building Hyperspectral Remote Sensed Image Classifier Combiners
نویسندگان
چکیده
Hyperspectral images are one of the most important data source for land cover analysis. These images encode information about the earth surface expressed in terms of spectral bands, allowing us to precisely classify and identify materials of interest. An approach that has been widely used is the combination of various classification methods in order to produce a more accurate thematic map based on classification of hyperspectral images. Our multi-objective remote sensed hyperspectral image classifier combiner (MORSHICC) approach uses a genetic algorithm-based strategy for choosing the best subset of classifiers, that is, the one which provides higher accuracy with the fewest possible amount of classifiers. We propose to use combiners that linearly weigh each classification approach through Genetic Algorithm (WLC-GA) and Integer Linear Programming (WLC-ILP). For building the combiners, we used three data representations and four learning algorithms, producing twelve classification approaches such that the multi-objective approach can select the best subset. Experimental results on well-known datasets show that the MORSHICC approach with WLC-GA and WLC-IP not only produces combiners with fewer classifier approaches but also improves the final accuracy rates. Therefore, these combiners may produce more accurate thematic maps for real and large datasets in a short time.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملMultiple Classifier System for Remote Sensing Image Classification: A Review
Over the last two decades, multiple classifier system (MCS) or classifier ensemble has shown great potential to improve the accuracy and reliability of remote sensing image classification. Although there are lots of literatures covering the MCS approaches, there is a lack of a comprehensive literature review which presents an overall architecture of the basic principles and trends behind the de...
متن کاملComparative Study On Hyperspectral Remote Sensing Images Classification Approaches
Hyperspectral remote sensing image is also known as an “Imaging Spectrometry” emerged as a promising technology for detection and identification of minerals, terrestrial vegetation, man-made materials and backgrounds. The word “Hyperspectral” is used to distinguish sensors with many tens or hundreds of bands from the more traditional multiple sensors. The success of a hyperspectral remote sensi...
متن کاملParticle Swarm Optimization (PSO) based approach for Classification of Remote Sensing Images
Dimensionality reduction is a major task in remote sensing images. Feature selection is applied for performing dimensionality reduction. It selects the spectral features(i.e. Bands) and find a feature subset that preserves the semantics of the hyperspectral image. Based on particle swarm optimization (PSO), this paper proposes multi-objective functions for selecting the spectral feature subsets...
متن کاملKernel-Based Nonparametric Fisher Classifier for Hyperspectral Remote Sensing Imagery
Hyperspectral Imagery Sensing (HIS) is widely gained tremendous popularity in many research areas such as remotely sensed satellite imaging and aerial reconnaissance. HIS is an important technique with the measurement, analysis, and interpretation of spectra acquired sensing scene an airborne or satellite sensor. The development of sensor technology brought the developing of collecting image da...
متن کامل